Automating Unrealizability Logic: Hoare-style Proof Synthesis for Infinite Sets of Programs
Automated verification of all members of a (potentially infinite) set of programs has the potential to be useful in program synthesis, as well as in verification of dynamically loaded code, concurrent code, and language properties. Existing techniques for verification of sets of programs are limited in scope and unable to create or use interpretable or reusable information about sets of programs. The consequence is that one cannot learn anything from one verification problem that can be used in another. Unrealizability logic (UL), proposed by Kim et al. as the first Hoare-style proof system to prove properties over sets of programs (defined by a regular tree grammar), presents a theoretical framework that can express and use reusable insight. In particular, UL features nonterminal summaries—inductive facts that characterize recursive nonterminals (analogous to procedure summaries in Hoare logic). In this work, we design the first UL proof synthesis algorithm, implemented as Wuldo. Specifically, we decouple the problem of deciding how to apply UL rules from the problem of synthesizing/checking nonterminal summaries by computing proof structure in a fully syntax-directed fashion. We show that Wuldo, when provided nonterminal summaries, can express and prove verification problems beyond the reach of existing tools, including establishing how infinitely many programs behave on infinitely many inputs. In some cases, Wuldo can even synthesize the necessary nonterminal summaries. Moreover, Wuldo can reuse previously proven nonterminal summaries across verification queries, making verification 1.96 times as fast as when summaries are instead proven from scratch.
Fri 25 OctDisplayed time zone: Pacific Time (US & Canada) change
13:50 - 15:30 | Program Synthesis and Verification 2OOPSLA 2024 at San Gabriel Chair(s): Tony Hosking Australian National University | ||
13:50 20mTalk | Automating Unrealizability Logic: Hoare-style Proof Synthesis for Infinite Sets of Programs OOPSLA 2024 Shaan Nagy University of Wisconsin-Madison, Jinwoo Kim Seoul National University, Thomas Reps University of Wisconsin-Madison, Loris D'Antoni University of Wisconsin-Madison DOI | ||
14:10 20mTalk | Compositionality and Observational Refinement for Linearizability with Crashes OOPSLA 2024 Arthur Oliveira Vale Yale University, Zhongye Wang Shanghai Jiao Tong University, Yixuan Chen Yale University, Peixin You Yale University, Zhong Shao Yale University DOI | ||
14:30 20mTalk | Hypra: A Deductive Program Verifier for Hyper Hoare Logic OOPSLA 2024 DOI | ||
14:50 20mTalk | SMT2Test: From SMT Formulas to Effective Test Cases OOPSLA 2024 DOI | ||
15:10 20mTalk | Validating SMT Solvers for Correctness and Performance via Grammar-based Enumeration OOPSLA 2024 DOI |